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Foreword

The mathematical basis of the Navy's multivariate optimum
interpolation (MVOI) analysis system is presented in detail. The
analysis is used operationally to analyze data for the Operational
Global Atmospheric Prediction System (NOGAPS 3), the
Operational Regional Atmospheric Prediction System (NORAPS 5),
and in the Navy's forecaster work station, the Tactical Environmental
Support System (TESS (3)). The purpose of this document is to
help Navy personnel to use the MVOI, and to serve as documentation
of the analysis system.

W. B. Moseley L. R. Elliott, Commander, USN
Technical Director Officer in Charge
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Executive Summary The equations for the Navy's multivariate optimum interpolation
(MVOI) analysis system for atmospheric analysis are presented in
complete form. Included are the derivations for horizontal and vertical
covariances that retain the geostrophic constraint and blend various
kinds of observations such as pressure thickness, pressure height, and
winds. Methods that scale the observation values to the resulting
nondimensional values so that they are consistent with the constraints
are presented.

The derivations of the analysis equations are provided using optimal
theory to minimize the analysis error variance. The derivation of the
internal data checking procedure is given. The method compares
suspicious values with neighboring values and removes rejected values
in a computationally consistent manner.

Validation experiments that show the exactness of the constraints,
expected analysis error, and the method for analysis of wind around the
poles are presented. These experiments have known results, and therefore
are useful in catching design and program errors.

A brief description is provided of the observation selection procedures
and internal quality control, and some recommendations for improvement
are given.
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The Development of the Navy's
Multivariate Optimum Interpolation
Analysis System

1.0 Introduction The Fleet Numerical Oceanography Center (FNOC) supports Navy
Fleet operations. To be effective, the center has had to evolve into a
numerical prediction center capable of support throughout the world. A
key component of this support is the Navy Operational Global Atmospheric
Prediction System (NOGAPS) described by Rosmond (1992) and Hogan
and Rosmond (1991). Besides providing an analysis and prediction of
weather patterns, it drives other predictions such as the Thermal Ocean
Prediction System (TOPS), the Global Spectral Ocean Wave Model
(GSOWM), and the WAve Model (WAM) with momentum and heat
fluxes.

With continual increases in computer power and a wider diversity of
observation platforms, a sophisticated analysis system was required to
effectively assimilate data into NOGAPS. As a result, the multivariate
optimum interpolation (MVOI) analysis was developed by the Naval
Oceanographic and Atmospheric Research Laboratory (NOARL). This
analysis method is similar to those developed at other centers such
as the National Center for Atmospheric Research (NCAR) (Schiatter,
1975), the Canadian Atmospheric Environment Service (Rutherford,
1976, 1978), the National Meteorological Center (Bergman, 1976, 1979),
and the European Center for Medium-Range Weather Forecasts (ECMWF)
(Lorenc, 1981). Although optimum procedures have been known for
over 30 years (Gandin, 1963), their potential was not fully realized
until the 1980's when sufficiently powerful computers allowed the
optimum interpolation software design to utilize hundreds of data values
for each grid point rather than tens of values, more sophistication in the
quality control procedures, and increased accuracy in determining the data
and assimilation system error characteristics (see Barker and Rosmond,
1985). ECMWF exploited these options on their supercomputers, and
many of their findings were included in the design and development of
the Navy's system.

The Navy's MVOI became operational early in 1988 (Barker, et al.,
1988) with the implementation of NOGAPS 3.0 The new system included
upgrades in all components: the finite difference model was replaced by
a spectral model, the calculus of variations initialization was replaced
with the nonlinear normal mode method, and the successive corrections
analysis was replaced with the MVOI.

This report provides the formulations and reasoning used in the
development of the MVOI, and some of the validation experiments that
also show functionality of the design options.

A major portion of the development of this system went into preparing
the raw data for analysis. This involved pulling the raw data from the
packed format in the FNOC data base, reformatting it, and then transferring
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it into a data base on the supercomputer. Data quality control
procedures are applied on the CYBER 205 data base as described
in Baker (199la-d). Rather than develop new tables for a new
format, the one developed by the World Meteorological Organization
for the Global Atmospheric Research Program (GARP) and the First
GARP Global Experiment (FGGE) was adapted. This format had the
added advantage of easier access to the FGGE data.

Although the theory underlying the MVOI can be found in numerous
papers, it is given in compete form in sections 2 through 5. Much of the
basic work was patterned after Lorenc et al. (1977) and Lorenc (1981). q
The additional work of Daley (1985) to include parameters for geostrophic
coupling and for relative magnitudes of the divergence and rotational
components of wind are also included.

Covariance computations on polar coordinates and transformation to
a Cartesian grid greatly simplify computations; these also are presented
in complete form.

Code validation is an extremely important part of any system
development. From the extensive literature describing MVOI methods,
ways of testing these characteristics can be found. The methods most
valuable in locating design and coding errors are presented in section 6.
These methods made the implementation of the analysis methods relatively
error free, although it is believed that totally error-free code may not be
possible (Parnas, 1985; Meyers, 1986).

The methods used to select the data can make a difference in the
smoothness and accuracy of the analysis (Barker, 1991). The data selection
procedure picks observations for volumes of grid points, and the size of
the volumes is determined by observation density. The strategy used for
this data selection procedure is given in section 7.

Vector computers, such as the CYBER 205, are most efficient when
the software is designed so that computations are done on strings of
contiguous variables. The computer is then able to compute values in
an assembly line fashion, resulting in ten-fold increases in computation
rates. The contiguous strings, or vectors, require special planning starting 0
with the theoretical foundation. For example, use of the volume method
of Lorenc (1981), where data values are selected and the analysis is
made for volumes of grid points vice individual grid points, make it
possible to compose computational strings of over 300 data values. The
computational vector length, therefore, is typically in excess of 300
operations long.

Even though MVOl theory was introduced into the meteorological
literature over 30 years ago, the MVOI techniques have undergone
dramatic improvement over the last 10 years. Much of this improvement
is due to the increased power of computers. However, to achieve the
added performance, the design of MVOI requires special consideration
for setting up the computation for vector and multiprocessor computers.

Finally, some recommendations are presented in section 8 that serve
to point out some of the weaknesses discovered in the system, and to
make some recommendations for further research.

2.0 Horizontal The underlying theory of optimum interpolation requires and accurate

Covariances description of prediction and observation errors to produce a truly optimal
solution. Unfortunately, optimal theory becomes too complicated except
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when the error structure of the predication model is assumed stationary
and homogeneous. This has lead some investigators to class MVOI as
commonly used as a statistical method rather than an optimal one
(McPherson et al., 1979) since the true optimal solution would be lost
with such simplifying assumptions. Nevertheless, it is hoped that the
models used to represent the prediction errors produce all but the minor
improvements that would be gained from precise statistical models.

When a simple covariance model is assumed, the short-term prediction
error correlations become:

(V 1)= (ý,,2 F (rij) (1)

*(XjXi) = (X2)G (rij), (2)

and

(0 K0j) =(02)E (rij). (3)

where 4t is streamfunction, X is velocity potential, and 0 is geopotential;
rij is the distance between two arbitrary points i and j; F, G, and E are
the covariance models for W, X, and 0, respectively; the angle brackets
symbolize an ensemble average operator, and (,#2), (X2), and (02) are
the prediction error variances.

The covariance of the predicted estimate errors between V and X is
defined as

(*iij) ( -- (X i (X )= "W' l(X2) H (rij), (4)

where H is the covariance model.
Using the Cartesian definition for distance

rij =-f(Xi-xj)2 + (yi-yj)2 , (5)

the partial derivatives in Cartesian space operating on an arbitrary function
A (rij) becomes

M = A'ar = A' -51 - = I A'
&j &_ _(__i_- Xj)_2 + (y,_-yj)2 r ,(6)

aA x.-x-
- -- A, (7)a r

and
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m4

a•A _ yj-Yi A'.(8

0-yj r

In these equations and those that follow, the subscripts on r are dropped
because they are not necessary for clarity.

Second, partial derivatives in Cartesian coordinate space operating
on A have the following form:

ax2 ( x-ai'' - (Yi -Yj(x[-xJ) A" (9)

ayi yJ I (r

a 2 A (i- _ xij) (Yi -y [A ýA l, !! (10)
aXi ayj r2  [ r]

_2A_ A' (Xi-Xj)2 A , and (11)

axi xj r r 2  r

h_ A' (yi-Yj) [A,,_]." (12)

)Y i aYj r r 2

With the relations above, the covanances defined by equations (1)
and (2) can be converted to measurable quantities, u, the wind along the
x-axis, and v, the wind along the y-axis. Substituting the relationships
between streamfunction, velocity potential, and wind,

U= - + ax (13)

ay ax

and

V: -+ -- .(14)

ax ay

The equation for spatial covariances for the u-component of wind
becomes:

+ KaI !j +Y

=- a! - __ NI N (15)
Nay ' M a y. Opt mum aI
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It is reasonable and much simpler to assume that the rotational
component of the atmospheric motion is uncorrelated with the
divergent component so that (XyW) = (Xj Wi) = 0, and

2 2

(Uuju) = _____ij) ax (xix1)
YI (yj -X yXj)

_ 1 d i~j (yi-Yj)2 [•(ii)

r dr r2

I dx (Xi--xJ) 2 [q((Xi~i))] (16)

r dr r2

where 9 is a derivative operator with respect to r defined as

9t (A) = A"- A' (17)
r

The vi -vj covariances are similarly derived so that

1 d ij _ (xi-xj)2 [9,(("i,
ri dr r 2

r dr r2
I d r -X~j (yi-yj)2  [91(wXiXjm . (18)

r2
Finally, for the ui -vj covariances

(xS- x = (y - y = [(( ( i x) )] • (19)

r 2

The covariances (16), (18), and (19) are simplified by transforming
winds to cylindrical coordinates, which is a coordinate system in the
radial direction, r, and the angle this direction makes with the x-axis,
0, i.e.,

v' = cv (20)

where

v O(21)
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v0
VI U 

(22)

and

Scos0 sin 0
c =(.) (23)

-sin 0 cos 0

The values uW and v' are the normal and tangential velocity components
respectively.

Since

c- I = Adjoint c, (24)

the reverse of equation (20) is simply

v = Adjoint c v' (25)

Using 0

XJ-Xi = cos 0 (26)
r

and

Yi-Yi = sine (27)
r

to solve for the velocity covariances in cylindrical coordinates yields:

(UI u'j J) = ((uicos0 + v, sinG) (u,Ucos 0 +vj sin0)

=(uiuj)coS2 9 .+ 2(uivj)sine cos 0+(vivj)sin 2 0 , (28)

or •

r dr dr 2

Similarly,

V ____' d_2_Wiwi (30)
= dr2 r dr

and 0
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These covariances are now easily computed once the relations (1) and
(2) are defined.

To obtain the covariances between geopotential, 0, and wind, the
covariances are first defined in Cartesian coordinates where

(O iuj) -= 
x

Yj-Yi +d (1iX (diXJ) , (32)
r dr r dr

(U u- ) (33)

_xj-Xi d i+ Yj-Yi d(Ooixj)- (34)

r dr r dr '

and

Covariances for a geostrophically coupled system can be Pnodeled
using

0 -7 (() (36)

and

0ix = (x it) =o0 (37)

where f is the Coriolis parameter and g is a function of the degree of
geostrophic coupling desired in the final analysis. As g. ranges from 0
to 1, the modeled covariance between wind and geopotential ranges
from 0, uncoupled, to 1, full geostrophic coupling. Fractional values of
gt result in a partially geostrophic system as discussed in Daley (1985).
Substituting equation (36) into equation (32) and equation (34) gives

4iu Y,-.L E_ __ I F-(r ) (38)
r f dr N E(r)

and

___x _ - p. d(*1 rF(r) (39)
r f dr V E(r)
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Assuming the autocovariance function for i, F(r), is the same as that
for 0, E (r), and using equations (26), (27), (32), and (34) to derive the
covariances in cylindrical coordinates yields:

(0iu;) = (iuj)cos 0 +(0iv)sin0

=0 , (40)

and

Sv;.)= (i vj)sine + (Oiv )cosO

_ F___ F(r) (41)
f dr E(r)(

It is possible to model the amount of divergence or rotation in the
predicted estimate wind error through an appropriate choice of covariance
model for X and v1. Since E (rO) is readily determined from observations,
it is convenient to define

F(r) = (1-v)E(r), (42)

and

G (r) = vE (r). (43)

The variable v then becomes the parameter to model the divergence
that exists in the wind field. As v approaches 1, the wind error models
become fully divergent, and as n approaches 0, the wind models become
rotational.

The covariance models (3), (29), (30), and (41) have now been
formulated so that:

- There are two parameters to control the constraints in the analysis:
g., which controls the geostrophic coupling, and v, which controls the
divergence.

* They are in cylindrical coordinates, which is simpler than in Cartesian

coordinates, and (u vJ), (v u), (v! '), and ( v;) do not have to be

computed since they are zero.
• Their computation is independent of the projection of the analysis

grid.
* They only depend on the function chosen for the normalized

covariance model for geopotential, E (rij).
The treatment of error functions in this section assumed that the

vertical structure was independent of the horizontal structure. This makes
the computations much faster than using a fully three-dimensional
structure function, and the mathematics are also easier. The
vertical structure formulations are presented in the next section.

8 The Development of the Navy's Multivariate Optimum Interpolation Analysis System



3.0 Vertical Covariances The definition of the vertical geopotential covariance is defined as

where the subscripts refer to two arbitrary pressure levels pi and pk, and
H is the normalized vertical covariance function for geopotential and a
function of the pressure levels.

The geostrophic coupling relations are complicated for vertical
covariances unless the normalized vertical covariance is the same for
both wind and geopotential. Consequently, the wind vertical covariances
take the form of equation (44) except 0 is replaced by u or v.

Satellites do not provide a reference such as surface pressure to their
soundings, so the temperature they measure can only be converted to
geopotential thickness, unless a reference level is separately analyzed
beforehand. Lorenc (1981) established the covariances for thickness so that
the satellite temperatures could be used directly. This makes the use of
thickness information more mathematically precise, as the optimality does
not have to account for the errors in a separately derived reference
level.

The vertical thickness covariance is

(DiDAk) = 0 , ))

= (Mk) -(Oi-I Ok) - (0-)+ (Ci10k-l) - (45)

where the individual terms are evaluated from equation (44).
Thickness correlated with any other variable such as Ak is

(DiAk)= (•j&A) - (O•jiAk). (46)

4.0 Variable Scaling The optimum interpolation equations are typically simplified
by normalizing the variables by the prediction error variance.
These normalization constants can be tricky, and if done incorrectly,
they destroy the geostrophic and rotational flow constraints, as well as
the statistical properties of the optimization.

The velocity covariance relations, equations (29) and (30), evaluated
in the limit as point separation goes to zero, form the basis for the
scaling values, i.e.,

42) lim[ 1 d2 Xi~j,- (47)

(u2)= -0 r dr - dr2

and

10 lim - d2(v,) 1 i d(,) (48)
r-4°0 dr 2  r

The Development of the Navy's Multivariate Optimum Interpolation Analysis System 9
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The prediction error estimate of the wind is computed from the background
or first-guess wind error variance because its dependence on latitude is
much smaller than the geopotential first-guess error variance. Then the
geopotential first-guess error variance is estimated from the error
covariance relationships. To make the scaling values compatible with
geostrophic coupling, the geostrophic coupling parameter, gt, is set to I for
full coupling and the divergence parameter, v, is set to 0 for nondivergent
flow. The streamfunction prediction error variance is estimated from

capproximation, -where 2 is the error variance of the

predicted estimate of geopotential, and as such becomes the square of
the scaling factor for geopotential. The relationship for the scaling
constants is

(v2()=-•2 lim (d2E(r)) (49)

(vP f r-->O dr 2

and

2 2 lim (1 dE(r) (50)
=u'1T r---0O dr (

where the subscript p designates the prediction error variance.
The relationship

lim d 2 E(r) = lim 1 dE(r) (51)
r--O dr2  r.-•O r dr

and the condition that the normalized model for geopotential, E, be
twice differentiable in the limit as r goes to zero (see Franke, et al., 0
1988) makes possible the definition

c r (2 dE(r=)I (52)V r--h0 r • !(2

The wind and geopotential scaling values are therefore related by

u2= v2 = ( .)(3

This relation must be satisfied if the geostrophic and rotational flow
constraints are to be imposed.

Wind variance is nearly the same in the tropics as it is in the mid-
latitudes, whereas geopotential variance decreases from midlatitudes to
the tropics. As a result, the scaling variances are determined by verifying
short-term predictions of wind against observations, and then computing
geopotential scaling constants from equation (53).

10 The Development of the Navy's Multivariate Optimum Interpolation Analysis System



Thickness scaling is computed from equation (45), where

[D2 (Pk)] = Cp pk) H(pk,pk)

-2•p (pk)ý,(P*-1)H (Pk,Pk-1)

+ 2p(pk-1)H (Pk-1,Pk-1). (54)

5.0 Optimizing the Meteorological analysis methods typically involve the computation
Analysis of a weighted average of observation values. Written in general vector

matrix form, the analysis at a specific point, k, is

rk= w (55)
bi -AP

where bi -pi is the difference between the observation value and the
prediction value, rk is the analyzed increment, and w is the column
matrix containing the weighting coefficients. Optimization of this equation
can be done in many ways and with different levels of success, depending
on the assumptions necessary to keep the solution tractable. The optimum
interpolation analysis method that evolved through the works of Gandin
(1963), Rutherford (1976, 1978), Schlatter (1975), Bergman (1976, 1979),
Lorenc (1981), Daley (1985), and others is the basis for the optimization
method adapted for this analysis. This analysis method requires that the
mean-squared error of the analysis be minimized over statistically
significant realizations. The limitations of this optimization are caused
by the assumption of stationarity and homogeneity in the computation
of the variable covariances and in the inexact determination of the
statistical parameters used.

This description closely follows the one presented by Lorenc (1981)
and Daley (1985, 1991), except that more steps are provided in the
derivations to make them easier to follow.

Minimization of analysis error requires the definition of the following
error parameters:

- Analysis error is a = A - T, where A is the analyzed value and T
is the true value.

"* Observation error is b = B - T, where B is the observed value.
* Prediction error is p = P - T, where P is the predicted value.

"* Analysis error estimate is E£ = (a 2)1/2.

"* Observation error estimate is E = _ (b 2)1/2.

- Prediction error estimate is E" = (p 2),-.

• The error parameters scaled by the prediction error estimate are:

0 -= , (56)
EP

The Development of the Navy's Multivariate Optimum Interpolation Analysis System 11



Ea =Ea (7
EP

q - , (58)
EP

A-Pr -(59)
EP

I-C (60)
EP

_aa=-, (61)Ea

bo
= , and (62)

E0

0 a E°E a• E (63)
E FP

The analysis equation scaled by the values of expected error is

bi E o Pi

Eo Ep Ep

pa -- (64)
bi EP Pi

Eo Ep EP

which leads to the equation for analysis error

(xkek - k÷w :: ] (65)

Squaring the analysis error equation (65); taking the ensemble average;
then using the following relations:

k2/~\ E) (66)

( --- (-p) = = (67)

12 The Development of the Navy's Multivariate Optimum Interpolation Analysis System



gives the squared analysis error equation,

(E') = 1-2w~khk+wkMwk (68)

where

M = ... mij ... (69)

mij =(nira) - EOP~)0- E(IPic 1)-(Xj3j)E0' (70)

and

h = (71)

The optimality in the analysis occurs when the differentiation of (68)
with respect to the weighting coefficients, wk, is set to zero, which
leads to

=Wk=M-hk• (72)

The analysis equation, (55), in optimal form is therefore

rk=hTM-lq. (73)

The last two terms of this equation are independent of the analysis
grid location, k, so they can be combined into a single term

c=M-I-q. (74)

This simplifies the analysis computation to

rk = cThk • (75)

The term (74) only needs computing each time the observations being
used are changed. Observation selections that span relatively large volumes
can be used for numerous gridpoints, reducing computation to a simple
inner product of two column vectors for all but the first grid point. This
simplification makes the volume method, where observation selections
are made for volurres of gridpoints rather than individual ones, cost
effective. This is especially true where observations are sparse. On a
spherical grid the converging meridians near the poles create
densely spaced gridpoints, so that about 20% of the total gridpoints are
easily assigned to the two polar volumes.

The Development of the Navy's Multivariate Optimum Interpolation Analysis System 13



Substitution of equation (72) into equation (68) gives the equation
for the expected analysis error

(E')2= I -hTM-1h. (76)

The expected analysis errors are useful in the comparison of strategies
for observation utilization, but are not needed during the operational
analysis.

Even though much effort goes into removing observations contaminated
for one reason or another (see Baker, 191 a-d), some remain questionable
and require further checking by the internal quality control procedures.
The steps to the internal quality control are the following:

1. Questionable observations are tagged. An observation becomes
questionable when it either marginally passes the external quality control,
or it departs from the background fields by an amount that exceeds
three times the expected error variance.

2. Observations that depart from the background field by an amount
that exceeds five times the expected error are tagged for gross rejection.

3. The change in the analysis done to a questionable observation is
evaluated by comparing the analysis at the location of the observation
with and without the observation.

4. If the change due to the observation exceeds expected tolerances,
then it is rejected by the analysis.

5. Rejected observations are kept in the analysis, but their weight is
constrained to zero. This is done without resolving equation (74).

The mathematics used to determine the change done to an individual
observation, its expected change, and procedures for constraining the
weights of rejected observations to zero are presented below. These
equations are also found in Rutherford (1978) and Lorenc (1981) in
more abbreviated form. The expected change of an individual observation
is related to the variance between the analysis and that observation,

(rk-q,)2=(r/2\-2 (rkqk)+(q2). (77)

Substituting equation (55) gives

rk tI ( T \k qk ) Wk .78

Since

q= : (79)

m ofi t-h ti

14 The Development of the Navy's Multivariate Optimum Interpolation Analysis System



it follows that

(qqT M, (80)

and

(rkql wT(qqk) = W
(rk = = w k , (81)

where mk is the kth column of M.
The average squared difference between analysis and observation is

now

(rk--qk)2 = wT Mwk - 2w Tk + I + (0) 2 . (82)

Minimizing this equation through optimization of the weight coefficients
gives

MWk + wTM - 2 mk =0, (83)

or

T M1,-k(84)Wk =M-1 mk=d.(

The vector dk is zero except for the elh element, which is one. The
minimization of equation (82) with the suspect observation contributing
to the analysis is not useful and produces only a trivial solution, and
therefore the minimization must be constrained.

Minimizing the averaged squared difference between the analysis and
observation subject to the constraint that selected observations are given
zero weight requires that equation (82) be minimized subject to the
constraints

dm wk=OVmEI, (85)

where Vm e I is to be read for all m from the set that makes up the list
of rejected observations, I.

A constrained minimization of the analysis error can be achieved
with variational calculus, or

*2 el
~r-q~2 = T T o 1610)2 'i'k

rk- q)2= wkMWk -2wkmk + 1+(k) -2 ).kdT k, (86)
Vm

where %, is the Lagrange multiplier used to insure the constraint, equa-
tion (85), is exactly satisfied. Taking the first variation of equation (86)

kwith respect to wk and ;Q, and setting the result to zero, gives an
equation set whose solution is the optimum column matrix, wk, that
gives zero weighting to the rejected observations, i.e.,

The Development of the Navy's Multivariate Optimum Interpolation Analysis System 15



O= 2wkM-22mk + 2D Xk + 2DTwk, (87)

The columns of D are made of dmVm E I. To solve for Xk, wk is eliminated
by multiplying both sides of this equation by M-1 and then DT, or

).k = - [DTM-ID]-IDTdk. (88)

The expected change caused by an individual observation is computed
by substitution of equations (85) and (72) into equation (86), or

(rk-qk)2 = () -wkm. (89)

Observations are rejected when they cause a change that exceeds their
expected change according to

(rk -qk)2> T2[(rk - qk)2+0.1]. (90)

The value of the tolerance, T, is used to tune the rejection, and the
analysis, rk, excludes the observation at k and others already rejected.
This method of evaluation is a way to compare an individual observation
with all of the other observations and the first guess. It even accounts
for differences in observation density, where an individual observation
is expected to impact an analysis more over data sparse than data-dense
areas.

Each questionable observation is tested using equation (90). Once all
the observations that fail the test are identified, the solution for optimal
weights is again computed through minimization of the equation for the
ensemble average of squared analysis error, but this time subject to
the constraint that the rejected observations have zero weight. The optimum
solution comes from minimization of

(E)=12Th T kE T

k W I h *dw (91)
VM

k
with respect to the independent variables wt and ).. This gives

0=- 2hk+2w M +2D.k+2DTwk. (92)

Multiplying both sides of this equation by M- 1 and D eliminates Wk,

thereby giving the solution for the Lagrange multiplier,

X = - (DT M -11))-l DT M-1h k. (93)

Substituting this equation into the equation for weighting coefficients,
equation (92), gives the final equation for the optimum weighting
coefficients,
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wk = M-1hk - M-ID (DT M-ID)-IDT M-'hk. (94)

The final analysis with rejected observations removed becomes

rk = (M- -M-1D [DT M 1 D ]-'DT M-')q. (95)

Collecting the terms that are independent of the grid point location into
a single term gives

rk=Cq hk, (96)

where

Cq = [M-1 - M-'D[DT MA D-1'DT M-'q. (97)

This equation represents the optimum analysis subject to the constraint
that rejected observations have zero weight. A comparison of the
coefficient equation for the optimum solution, (74), with the equation
for optimum solution using constraints, (97), reveals that the two solutions
can be computed as simply as one, because the second solution is a
function of the first. The only additional work required for the second
solution is the inversion of [DTMD], which is a square matrix with
order equal to the number of rejected observations. Typically, the solution
for 300 observation values will require the inversion of a sixth order
matrix, corresponding to 6 rejected values.

The theory above is used in the analysis of observations using the
following steps:

1. All observation values are converted to differences between observed
and predicted values. This is done by interpolating the gridded prediction
to observation location, and subtracting the predicted value from the
observed value. The interpolation is done using a cubic-spline algorithm
designed to take advantage of the vector speeds on the computer.

2. A grid volume is defined and the observations appropriate for this
volume are selected, up to a limit of 300 values.

3. The normalization coefficients are used to convert the observations
into nondimensional space.

4. The pixdiction error covariance models are used to compute the
covariances between the observations, and the results are stored in M.

5. The covariance matrix, M, is decomposed using Cholesky
decomposition. Again, this is done using an algorithm designed to take
advantage of the vector speed of the computer. This makes it possible
to apply the factor M-1 by multiplication of the matrices that result
from the decomposition.

6. The changes in the analysis due to each questionable observation
are compared to their expected change using equation (86), and those
failing to meet the conditions of equation (90) are rejected.

7. The column matrix (equation 74) is defined from M-1 and the list
of rejected observations.
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8. For each gridpoint, k, the covariances are computed between
observation locations and gridpoint location, and stored in hk.

9. The inner product between ck and hk is computed as in equa-
tion (96) to get the analysis at location k.

10. The previous two steps are repeated through all points on the
grid.

11. The normalization coefficients are used to convert the analysis to
dimensional space.

12. Steps 2 through 11 are repeated until all grid volumes are complete,
then the grid volumes are meshed with each other to form the
completed analysis increment.

13. The increments are interpolated to the model coordinates and
added to the prediction values. This updates the prediction model, thereby
generating the analysis.

The bulk of the computer code used to generate an analysis from the
steps above is in the data base interfaces, the observation sorting, selection, Q
and tagging. It is difficult to validate this code except to track individual
data values through the process, which was done in a variety of ways.
The theory, likewise, is difficult to validate because of the lack of
analytic examples to generate exact cases. Some of the validation tests
that illustrate features of the analysis are given in the next section.

6.0 Validation of In the development of prediction models, the accuracy of the numerical
Analysis System product is frequently compared against a known result. The nature of

objective analysis methods does not typically require that this be done

unless one wishes to insure against coding or design errors whose effect
is too small to be detected when the system is exposed to imperfect real
situations. This insurance against small errors is valuable because it is
these errors that go undetected for years, and cause sophisticated analysis
methods to perform as poorly as the less rigorous simple ones.

A complete suite of tests are available to test multivariate optimum
interpolation against theory. The ability of the analysis system to retain
constraints, the impact of observational correlated error, the accuracy
of the vertical interpolation, the impact of the poles in the spherical
grid, the computation of the covariance model from analytical fields,
and a nonlinear-least-squares fitting algorithm have been tested. These
tests are also valuable in their illustration of the strengths of the
multivariate optimum interpolation methodology. A few of the more
important tests are given here to demonstrate the features built into the
program.

6.1 Analysis Constraints Two constraints can be imposed through the proper selection of the
appropriate parameters when the covariances are computed.

The geostrophic constraint is controlled by the parameter It, which
must be set to one for full geostrophic coupling. Since the geostrophic
constraint is also nondivergent, the divergence parameter, v, must be
set to zero to give a purely rotational wind field.

The geostrophic constraint was tested using a line of gridpoints 10 km
apart. Observations were located at the endpoints of this line. The analyzed
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winds were then compared with the wind computed from the centered
finite difference equivalence of u = -f V, ý. The results of this experiment
are shown in Figure 1 for the right-hand side of the grid, since the
solutions are symmetrical about the center. As shown in Figure 1,
the computed and analyzed winds were identical to each other, illustrating
that the geostrophic constraint is precise. It should be remembered that the
analysis constraints are only imposed on the increments between
the analysis and the prediction, and not the total field. Applied only
to the increments, it can be argued that the nonlinear effects are negligible
and that the geostrophic coupling is satisfactory. Williamson and Daley
(1983) discovered situations where the nonlinear component is important,
and they proposed a unified method to overcome the deficiency. Their
method adjusts nonlinear components of the flow through iteration
between the analysis and initialization; a technique that should be tested
with the Navy system.

Even though the parameters may be set for full coupling between
winds and heights, the resulting analysis may lack this coupling. This
is caused by two factors:

1. The grid used to compute geostrophic winds may lack the resolution
required to pick up the gradients that exist on the analysis surface, and

2. The observations used to analyze one area may not be used to
analyze an adjacent area.

This latter factor is illustrated in Figure 2 where the observations
used over the center half of the grid were different from the ones used
over the outer quarters; the center half of the grid included a
wind observation equal to the geostrophic wind computed from the two
height observations located at the endpoints. Note the discontinuity in
Figure 2 at the boundary between the analysis done with all observations
and that done only with heights. The analyzed winds reflect the geostrophic
winds of the analysis surface, whereas the computed winds reflect
the differences between the two surfaces. This effect may not be
obvious where the observations are selected for gridpoints (see

1.4
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S1.0
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0 - I
0 100 200 300 400

DISTANCE (kin)

Figure 1. The analyzed pressure height and computed wind from height using
the geostrophic relationship plotted with the true solution for height. The
analysis was made from two height observations located at +400 km and
-400 kin, and a single wind observation at the origin.
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Figure 2. Same as Figure 1 except the left half of the grid was analyzed using
a different set of observations from the right side. The discontinuity in the
height surface in the center is where the switch from one data set to the other
was made.

Barker, 1992), but where they are picked for grid volumes the analysis
surface in one volume may be significantly different from the surface
in an adjacent volume. Consequently, the volumes are designed so that
they overlap and the discontinuity can be made smooth through weighted
averaging of the overlapping surfaces. Unfortunately, the constraints
are not retained through this averaging procedure.

The constraint governing the divergence is illustrated using a single
wind observation at the center of the analysis grid. The results for fully
rotational (v = 0), fully divergent (v = 1), and a mixture of divergent
and rotational (v = .5) are shown in Figure 3. It is of interest to note
that the analysis comprised of both divergent and rotational components
produced corrections along the direction of the observed wind only.

The impact of the coupling of a multivariate analysis was tested in
a global data assimilation experiment. The system used was NOGAPS
version 2 (the current version is 3.2). The fit of the analysis first-guess,
which is the predicted values from the previous analysis, was used to
measure the success of the two systems. In both experiments, the analysis
equally fit the observations, but first-guess errors were about 10% smaller
in the coupled system. These results are shown in Figure 4.

6.2 Expected Analysis Error The expected analysis error is the quantity that is minimized in the
optimization of the weighting coefficients used in the analysis. This
quantity is useful in the illustration of the power of the optimum
interpolation methodology, and it is readily computed from equation (76).
The capability of the analysis to effectively utilize various types of
observations was illustrated for the following situations: correlated
observational error compared to random error; height and wind analysis
accuracy compared for computations from height observations alone,
wind observations alone, or a combination of heights and winds. These
experiments are similar to the ones illustrated by Bengtsson (1976).

Correlated observation error may occur when a single platform, such 0
as a satellite, is used to produce many observations. Should the errors
be caused by the instrument or the algorithm that converts the sensor
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Figure 3. Wind analysis using a single wind value. The divergence parameters was set for (a) fully rotational,
(b) fully divergent, and (c) a combination of both divergent and rotational.

signal to an environmental measurement, then all of the observations

taken by the instrument will have similar errors. The ability of the
optimum interpolation to extract gradient information from a system
that contains corrlated errors is shown in an experiment in which a
series of analyses were performed from four observations. The analyses
were identical except for the location of the observations, which were

positioned closer together in each succeeding analysis. The estimated
analysis error in the center of the observation grid was computed. The
results of a series of analyses were plotted to show how the estimated

error changed with observation spacing. Figure 5 shows the results of
two series of analyses, one with random and the other with correlated

observation error. The estimated analysis error in the wind is smaller
when the height observation errors were correlated than when they were
random, illustrating the capability of the analysis to extract gradient
information from otherwise poor data. The estimated error in the height
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Figure 4. Root-mean-square differences between radiosonde heights and
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1.2
(a)

cc1.0
Uii

~0.8

~0.46

2Ž0.

12

E5 
HIERObANO

cc ERORCRRLAE

0o.8

U00.6

2W 0.4

-- WNO ERROR RANDOM~021
-- WND ERROR CORRELATED

0 1 1

0 02 0.4 0.6 0.8 1.0
RADIUS (1000 kin)

Figure 5. Estimated root-mean-square error in analysis of (a) heightu and (b) wind,
at the center of a four-point observation grid vs. radial distance for four
height observations comparing random observation errors with correlated
observation errors.

analysis was least when the observational error was random, illustrating
that the optimum interpolation is able to remove random error by averaging
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the data values, and this capability is improved with observation density.
From the viewpoint of utilizing satellite data, increased observation
density improves the height analysis when the errors are random, and
improves the wind analysis when they are correlated.

Wind observations alone may not produce an accurate height analysis
because winds can only contribute to the gradients. This was shown
using the method described above except that the four observations
were wind. A second series of analyses were done, but with a height
observation added to one of the locations. A comparison of the expected
errors in heights for the two observation configurations, Figure 6, shows
that although the errors were large when winds alone were used, adding
a single height observation dramatically decreased the height errors by
as much as 50%.

The advantage of the multivariate analysis was also illustrated by the
simulation of an aircraft making observations through the southeast
sector of a low pressure system. Three different aircraft sensor
configurations were simulated: wind sensor alone, height sensor alone,
and a combined wind and height sensor. The simulated observations are
shown in Figure 7. The true fields are shown with the analyzed fields
in Figures 8 and 9. The wind sensor alone simulation gave a reasonable
location for the storm, but it was too weak. The height sensor alone
simulation produced a more intense storm in the analysis, but it too was
weak, and its location was too far southeast. The combined sensor
produced the best results, although it, too, lacked intensity. The fit of
the analysis to the simulated observations and to the true field is shown
in Figure 10. When verified against the observations, the analysis
agreed with height observations when using the height-only sensor, and
it agreed with wind observations when using the wind-only sensor.
Compared to the true field, however, the wind-only sensor produced
least accurate results, followed by the height-only sensor. The combined
wind and height sensor produced the most accurate analysis reducing
the height analysis from the wind-only sensor by 47% and reducing the
height analysis error by 25%.

12
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Figure 6. Estimated root-mean-square error in analysis of height at the center
of a four-point observation grid vs. radial distance for four height observations,
four wind observations, and four wind observations plus one height observation.
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Figure 7. Simulated aircraft observations through the southeast sector of a storm, (a) heights and (b) winds.
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Figure 8. (a) Height pattern of a low pressure system true field, (b) analyzed from a
system observing winds alone, (c) analyzed from a system observing heights alone, and
(d) analyzed from a system observing winds and heights.
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Figure 9. Source as Figure 8 except for winds.
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Figure 10. Root-mean-square error as determined from the simulated
observations and the true fields. The errors are for three simulations: wind
sensor alone, height sensor alone, and combined wind and height sensor. The
left half of the graph is for verification against observations and the right half
is for verification against the true field.

6.3 Vertical Interpolation The vertical consistency of the analysis is best maintained with
observations of wind and temperature profiles that extend through the
analysis layer. To use single level observations such as aircraft
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measurements and cloud-track winds requires determination of appropriate
vertical covariance function of the prediction error variance. The example
illustrated shows how satellite temperature profiles may be combined
with single-level observations so that they support each other.

Satellite derived soundings do not contain the reference level needed
to convert inferred temperatures to geopotential height, so the observations
are given in thicknesses between the standard pressure surfaces. A common
method to analyze satellite soundings has been to analyze a reference
level, and then convert the satellite derived thicknesses to geopotential
heights. Using MVOI, satellite derived thicknesses can be input directly
and blended with available reference data.

To test this feature, two analyses were computed. One analysis was
given a single thickness observation, and the other was given a thickness
and a pressure height observation. To make the results easy to
interpret, the observations were assumed to contain no error. After
subtracting the predicted estimate, the thickness increment of
the 500- to 400-mb layer was -200 m, and the height increment of the
300-mb pressure surface was 0 m. In this test, the horizontal locations
of the analysis gridpoints and the observations were horizontally
collocated. The vertical covariance model relative to the 500-mb surface
is shown in Figure 11. The two analyses and vertical locations for both
analyses are shown in Figure 13.

The analysis increment from the single thickness observation produced
a 500- to 400-mb layer thickness correction of -200 m. Note that the
largest correction occurred at 300 mb. In the second analysis, the 300 mb
height observation was added. The analysis increment for the 500- to
400-mb thickness was again -200 m, but this time the analysis increment
at 300 mb was 0 m, corresponding to the value of the added observation.
In other words, with zero observation error, the analysis drew to
the observations, in effect using the height observation as a reference level.
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Figure 11. Vertical covariance model relative to 500 mb.
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observation shown with an analysis increment computed from
the single thickness observation and a height observation. Both
observations were assumed to contain no error.
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Figure 13. Plots of the thickness of the analyses shown in Figure 12.

In another pair of tests, the observations were assumed to contain
random error variance at 80% of the predicted estimate. The analysis
increments, shown in Figure 14, were about 45% smaller than the results
above, and closer to the increments that would be computed in an actual
situation. The analysis did not draw exactly to the data, but instead was
making a compromise between the predicted estimate and the observations.
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Figure 15. Two wind observations representing the same flow shown plotted on
a spherical grid and the resulting analysis.

6.4 Analysis Near Poles Winds lose their definition of direction on a spherical grid near the
poles. To eliminate this problem, the analysis is done with the wind
components projected to a polarstereographic projection, and then the
product converted back to a spherical grid. The success of this procedure
was illustrated by placing two wind observations near the north pole.
Although they represent the same flow, projected onto a spherical grid,
they appear to flow in opposite directions. The analysis shown in both
spherical projection, Figure 15, and polarstereographic projection,
Figure 16, agree with the input observation. Tests of the geostrophic
constraint in the polar volume across the pole gave results as accurate
as other areas.

7.0 Data Selection The volume method of MVOI pertains to the procedures used to
Procedures select observations for analysis at a particular gridpoint. Historically,

observations were selected for individual gridpoints, but limited computer
time and the belief that five observations containing height and wind
would be sufficient to acquire the necessary accuracy kept the typically
selected number of observations small. As the computer power increased,
most centers increased the number of observations used to analyze a
single gridpoint, and the increased numbers surprisingly improved the
analysis.
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Figkre 16. Same as Figure 15 except plotted on a polarstereographic grid.

Lorenc's (1981) solution to using large numbers of observation per
gridpoint is to make the selection for volumes of gridpoints. This lessens
the computational work load since equation (73) needs to be solved
only once for volumes containing from 1,000 to 40,000 points.

The results in section 6 show how a discontinuity can occur in an
analysis. Since there is limit to the density of gridpoints one may choose,
the solution to the analysis equations for a particular set of observations
and error functions is actually a smoothly varying surface. When the
observations, functions, or both are changed from one area to the next,
the analysis surfaces may take on the appearance of Figure 2, in contrast
to Figure 1, where the error functions and observations are the same
throughout. Dynamic consistency of the analysis is best obtained using
the volume method, because it tends to fit the observations as well
as the gridpoint method, plus it is smoother. Obviously, the gridpoint
method converges to the volume method as the observation selection
and error functions become similar.

With these characteristics in mind, the data selection scheme was
designed to achieve several goals:

1. Achieve vertical and horizontal smoothness,
2. Maximize analysis volumes over the polar regions where gridpoint

density is largest,
3. Maximize the influence of radiosondes below 100 mb,
4. Maximize the influence of satellite soundings above 100 mb,
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5. Maximize the distribution of observations used in the analysis,
6. Minimize computations,
7. Utilize as many of the observations as feasible.
The characteristics of the resultant configuration of observation selection

are the following:
1. Analyze over the largest possible polar volume that contains 300

data values, which produced a polar volume that included all gridpoints
poleward of ±700.

2. Spatially vary observation selection volumes to utilize most
observations within a region. This tactic produced volumes over continents
that were half as large as the volumes over the oceans of the Southern
Hemisphere.

3. Profile observations such as radiosondes, satellite soundings, and
PIBALS were either wholly selected or completely excluded, according
to a priority list for observation selections instead of arbitrarily selecting
values from all profiles. This was done to insure vertical consistency
and smoothness.

4. The priority list of observation selection starts with radiosondes
and surface observations, and then works through satellite derived
thicknesses, PIBAL winds, AIREPs, and finally satellite winds.

5. To get the selected observations to be evenly distributed over the
volume, the observations were first sorted by latitude. The selection
strategy involves choosing every fourth observation or so starting with
the first observation the first time through, the second observation the
second time through, etc.

8.0 Internal Quality The strategy for removing observations with errors is not easy, yet the

Control quality of a forecast may fully depend on a correct decision in data
quality control. The difficulty can be illustrated using the simulated
aircraft scenario of section 6.2 as plotted in Figure 17. In this illustration,
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Figure 17. Same as Figure 7a, but for one observation in
error. The observations rejected by the analysis are marked
by an x.
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Figure 18. The analysis of height using the observations shown in Figure 17 (a) when only the erroneous observation
(reported as +50 m) was marked suspicious and (b) when the erroneous observation and its two closest neighbors
were marked suspicious.

the aircraft had a height-only sensor, but one of the observations came
in as +50 m instead of -219 m. Two strategies were used to remove the
error. In one instance, only the erroneous observation was marked
suspicious, and in the other the erroneous observation and the observations
on either side were marked suspicious. The solutions for the two cases
were completely different (Fig. 18). When only the observation in error
was marked suspicious, it was correctly eliminated, but when the erroneous
observation and its two nearest neighbors were marked suspicious, a
key observation was eliminated. The eliminated observations are shown
in Figure 17 marked by an 'x" for the test where more than the erroneous
observations were marked suspicious.

Clearly, the problem illustrated here is the result of a sparsely observed
region. But it is this sparsity that makes the quality control solution so
critical. It is recognized that as much preprocessing as possible be utilized,
and that the internal quality control be given as much assistance as
possible to make the correct decisions.

There are many other things that can be done to insure that only the
highest quality observations get into the analysis, and the process is
continually evolving.

For example, work is ongoing to utilize the performance history of
the observations and to eliminate consistently bad stations (see Baker
et al., 1991).

9.0 Conclusions Although there are newer and better methods being developed, there
are still things that can be done to make the Navy MVOI give better
results. Suggestions based on the experience gained since the system
became operational in 1988 are presented below.

The MVOI couples the wind and geopotential linearly using the
geostrophic relationship. It has been shown by Williamson and Daley
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(1983) that the model rejects some of the information provided by the
observations. Some of this rejection may be caused from application of
linear analysis methods to the nonlinear atmosphere. An iterative-
analysis-initialization procedure has been shown to solve this problem
through making the corrections to the model nonlinear. This could be
applied to the existing system without much redesign, and some studies
using a shallow-water version of the NOGAPS data assimilation system
are being conducted.

Even though the analysis method is capable of analyzing for the
divergent component of the wind field, this divergent flow gets rejected 5
by the data assimilation system, and consequently is removed by the
nonlinear normal mode initialization. Studies are needed to couple
the analysis of divergence with moisture in the tropics (Krishnamirti
et al., 1988), which will force the model to more closely simulate the
tropical divergence associated with cumulus clouds.

The tight coupling of the tropics and the midlatitudes make the tropical
analysis and initialization more important. This has been demonstrated
by Gelaro (1991) and the time scales for interaction between the tropics
and midlatitudes is well within the range of predictability expected
from NOGAPS.

More intelligence is required to insure the best observational information S
is "Iput to the data analysis. The early work of Baker et al. (1991) may
evolve into artificially intelligent data selection software that tests the
recent performance of observations, the atmosphere's instabilities, and
model performance before deciding on the appropriate data to use.

The prediction errors are known to vary, particularly where the
atmosphere is baroclinically and convectively unstable. New methods
are being developed to improve estimates of predication errors.

Much more work is still required to improve the range and accuracy
of NOGAPS. The importance of data quality control, data analysis, and
data rejection in the model require that attention be directed toward
prediction system improvement. 0
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